RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [BATCH 2015-18] B.A./B.Sc. FOURTH SEMESTER (January – June) 2017 Mid-Semester Examination, March 2017

CHEMISTRY (General)

Paper : IV

Date : 16/03/2017 Time : 12 noon – 1 pm

[Use a separate Answer Book for <u>each group</u>]

<u>Group – A</u>

[Attempt one question from each Unit]

- <u>Unit I</u>
- 1. a) Write down expressions of K_P for the following reactions
 - i) $N_2(g) + 3H_2(g) = 2NH_3(g)$
 - ii) $CO(g) + Cl_2(g) = COCl_2(g)$

And relate K_P with K_C for these.

- b) Show that $K_P = K_C$ for $\Delta v = 0$.
- 2. a) At 400°C and at total pressure of 1.013×10^5 Nm⁻², COCl₂(g) is dissociated to the extent of 20% as shown by the equation CoCl₂(g) = CO(g) + Cl₂(g). Calculate K_P for this reaction. [3]
 - b) At equilibrium, free energy change is zero, but $\Delta G^{\circ} = -RT \ln K_{p}$. Explain.
 - <u>Unit II</u> [5]
- 3. a) Write down the thermodynamic definition of entropy.
 - b) Calculate the entropy change when a litre of one mole of a gas at 1 atm, 273 K is expanded reversibly to 2 litres under isothermal condition. [2]
 - c) Comment whether the entropy change would be (i) greater (ii) less or (iii) the same if the process mentioned in (b) in carried out irreversibly. [2]
- 4. a) The efficiency of a Carnot engine can be increased both by increasing the temperature of the source or by lowering the temperature of the sink. Which of the two is more effective and why? [3]
 - b) Starting with the Clausius inequality show that the entropy of the universe increases forever. [2]

<u>Group – B</u>

[Attempt one question from each Unit]

5. a) Carry out the following conversions.

b) Explain the following observation with mechanism.

 Full Marks : 25

[5]

[2×2]

[1]

[2]

[1]

[5]

[2]

[2×1·5]

- Arrange the following molecules with increasing order of basicity. 6. a)
 - NH₃, EtNH₂, Et₂NH, Et₃N i)
 - b) Predict the product with mechanism

i)
$$Ph$$

 CH_3 H $CONH_2$ Br_2/KOH

<u>Unit – II</u>

[5]

[2]

[3]

- 7. Use concept of charge delocalisation by extended π bonding to explain why RCO₂H is more a) acidic than ROH (pKa = 15)
 - b) Show the product of the following reactions :

i)
$$CH_{3} \overset{OH}{CCl+} \longrightarrow ii) \overset{OH}{\swarrow} + CH_{3}CH_{2}CH_{2}OH - H_{2}SO_{4} \rightarrow ii)$$

iii)
$$CH_3 COCCH_3 + CH_3 CHCH_2OH \rightarrow$$

CII

- Write structures of the organic products for the following reactions and give mechanism. [2+2+1]8.
 - $(R) CH_3COOCH(CH_3)CH_2CH_3 + aq.NaOH \rightarrow$ a)
 - $(R) CH_3COOCH(CH_3)CH_2CH_3 + H_3O^+ \rightarrow$ b)
 - c) $C_6H_5COOC_2H_5 + NH_3 \rightarrow$

Group – C [Attempt any one question] [1×5]

9.	a)	Write the full name of EDTA, and its chemical formula. Why H ₄ EDTA is not u	sed in
		quantitative chemical analysis.	[1+1+2]
	b)	What is the oxidimetric equivalent weight of KH(IO ₃) ₂	[1]
10.	a)	Name one metal ion indicator in complexometric titration, write its chemical formula.	[1+2]
	b)	Why KMnO ₄ is not used as primary standard substance?	[2]

Why KMnO₄ is not used as primary standard substance?

– x –

[2]